Hadoop大数据课程:HDFS有哪些特性
Hadoop大数据课程:HDFS有哪些特性,HDFS和传统的分布式文件系统相比较,具有以下明显的特性:
高度容错,可扩展性及可配置性强。由于容错性高,因此非常适合部署利用通用的硬件平台构建容错性很高的分布式系统。容易扩展是指扩展无须改变架构只需要增加节点即可,同时可配置性很强。
跨平台。使用Java语言开发,支持多个主流平台环境。
shell命令接口。和Linux文件系统一样,拥有文件系统shell命令,可直接操作HDFS。
Web界面。NameNode和DataNode有内置的Web服务器,方便用户检查集群的当前状态。
文件权限和授权。拥有和Linux系统类似的文件权限管理。
机架感知功能。在调度任务和分配存储空间时系统会考虑节点的物理位置,从而实现高效访问和计算。
安全模式。一种维护需要的管理模式。
Rebalancer。当DataNode之间数据不均衡时,可以平衡集群上的数据负载,实现数据负载均衡。
升级和回滚。在软件更新后有异常发生的情形下,能够回滚到HDFS升级之前的状态。
-
标签错误:<!-- #Label#
labelId=20160707140604
moduleId=1
classId=12231768634
orderby=2
fields=url,title,u_info
attribute=
datatypeId=22192428132
recordCount=3
pageSize=
<htmlTemplate><dt><img src="/images/index_26${index}.jpg" width="100" height="62" /><a href="$url" title="${title}">${title}</a><span>${api.left(u_info,60)}</span></dt></htmlTemplate>
-->
- 我要参加技术沙龙